A Structure Trainable Neural Network with Embedded Gating Units and Its Learning Algorithm

نویسندگان

  • Kenji Nakayama
  • Akihiro Hirano
  • Aki Kanbe
چکیده

Abstract Many problems solved by multilayer neural networks (MLNNs) are reduced into pattern mapping. If the mapping includes several different rules, it is difficult to solve these problems by using a single MLNN with linear connection weights and continuous activation functions. In this paper, a structure trainable neural network has been proposed. The gate units are embedded, which can be trained together with the connection weights. Pattern mapping problems, which include several different mapping rules, can be realized using a single new network. Since, some parts of the network can be commonly used for different mapping rules, the network size can be reduced compared with the modular neural networks, which consists of several independent expert networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of remote sensing and meteorological data to predict flooding time using deep learning algorithm

Accurate flood forecasting is a vital need to reduce its risks. Due to the complicated structure of flood and river flow, it is somehow difficult to solve this problem. Artificial neural networks, such as frequent neural networks, offer good performance in time series data. In recent years, the use of Long Short Term Memory networks hase attracted much attention due to the faults of frequent ne...

متن کامل

Two Novel Learning Algorithms for CMAC Neural Network Based on Changeable Learning Rate

Cerebellar Model Articulation Controller Neural Network is a computational model of cerebellum which acts as a lookup table. The advantages of CMAC are fast learning convergence, and capability of mapping nonlinear functions due to its local generalization of weight updating, single structure and easy processing. In the training phase, the disadvantage of some CMAC models is unstable phenomenon...

متن کامل

Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation

Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

Neural network models of perceptual learning of angle discrimination

We study neural network models of discriminating between stimuli with two similar angles, using the two-alternative forced choice (2AFC) paradigm. Two network architectures are investigated: a two-layer perceptron network and a gating network. In the two-layer network all hidden units contribute to the decision at all angles, while in the other architecture the gating units select, for each sti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000